N-gram Indexing for Protein Sequence Databases
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ABSTRACT

Motivation: Though the sequence databases of
proteins and DNAs are increasing in size exponen-
tially, still exhaustive sequence search systems are
commonly used in conducting biological researches.
However, due to the advancement of information
technology, many information retrieval algorithms
have been developed to search strings in large-scale
text databases and are proved to be successful. We
propose that these algorithms could also be applied
to the biological data.

Results: Four n-gram indexing methods (tri-
gram, tetra-gram, penta-gram, and hexa-gram)
were applied to extract indices from protein se-
quences of the PIR-NREF database, and their
retrieval effectiveness and speed were measured.
Penta-gram method showed the best results that
its retrieval effectiveness matches for BLASTP and
its retrieval speed was about 38 times faster than
BLASTP program.

Availability: Our protein sequence search service
is accessible at http://proses.kisti.re.kr.

Contact: Dr. Hyeon S. Son (hss@kisti.re.kr)

INTRODUCTION

For newly discovered proteins or DNA sequences,
it is important to find similar or homologous se-
quences from existing databases, and it often gives
some useful clues to their function. Popular biolog-
ical sequence search systems find answers by com-
puting local alignment scores between a query se-

*To whom correspondence should be addressed. Tel: +82-
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quence and every sequence in the target database.
Computing time in exhaustive search systems is pro-
portional to the both lengths of the query and target
sequences as well as to the number of sequences in
the database. The amount of calculation is obvi-
ously huge in such systems; therefore efficiency is
crucial in order to get search result within tolera-
ble time limit. As biological databases are rapidly
growing in size, this efficiency problem is becoming
serious. To avoid the huge computational tasks re-
quired by conventional local alignment algorithms,
heuristic search algorithms are often employed in-
stead. They attempt to select candidate sequences
and to determine final answers by calculating lo-
cal alignments only for these candidates. Among
them, FASTA suggests a k-tuple method, where k
is a small integer and a k-tuple is an sub-string
interval, of fixed-length k, extracted from the bi-
ological sequences. The k-tuple method is a two-
phase approach (Lipman et al., 1985); in the first
phase, it tries to find identical k-tuple subsequences
that occur in both the query and the database se-
quences, then, it tries to extend these subsequences
to get possible local alignments. This k-tuple
method is further improved in BLAST (Basic Local
Alignment Search Tool) program (Altschul, 1991),
which soon became a dominant tool for biolog-
ical sequence retrieval. Another work, derived
from information retrieval researches, extends the
first step of FASTA to inverted files of n-gram in-
dex (Williams et al., 2002). It introduces a two-
phase search process embodied in a research pro-
totype system, CAFE. The first phase, called coarse
search, uses an inverted index to select a subset of
sequences that display broad similarity to the query
sequence. The second phase, called fine search, is



a computationally more expensive step which ranks
the resultant sequences from the coarse search in or-
der of local alignments to the query. The CAFE sys-
tem is shown to be superior to BLAST in speed and
its retrieval effectiveness is also comparable to that
of BLAST (which is a collection of the most com-
monly used search tools for biological sequences).

Independently, in the field of computer sci-
ence, “information retrieval” systems have been
shown to be effective search tools for large text
databases (Salton et al., 1983, Witten et al., 1999).
“Information retrieval” is a problem of retrieving
relevant documents to a query from a collection of
documents. This research has been used in many
full-text indexing systems and Internet search en-
gines successfully. On the other hand, biological
database search tools retrieve a set of sequences
which is similar to a query sequence from the bio-
logical sequence databases. Therefore, the concepts
and practical approaches of searching similar se-
quences from biological sequence databases and re-
trieving relevant documents from text databases can
be practically identical, as shown practically in the
case of CAFE system. Regarding biological sequences
as texts written in DNA base or amino acid codes,
we expect that one can implement an information
retrieval system for biological sequence database if
appropriate indexing techniques are used. As a be-
ginning, in this report, we suggest indexing schemes
for protein sequences based on n-gram method and
present their retrieval speed and effectiveness for the
search of the PIR-NREF database.

SYSTEMS AND METHODS

System Environments

We implemented a simple information retrieval
system dedicated to protein sequence databases
with C++ STL(Standard Template Libraries) and
an embedded database system called Berkeley
DB (Loverso et al., 2002). Our system, named as
ProSeSl, extracts n-gram indexes from protein se-
quence data written in FASTA format and stores
the indexes into B+ tree provided by Berkeley DB
system. Details of sequence searching based on n-
gram indexing will be described in the later section
Sequence Similarity Measure.

We used a desktop Linux machine with dual
CPUs of Pentium-IV 2.4GHz, three giga-bytes of
system memory, and an Ultra-160 SCSI hard drive.
All the tests were carried out while the machine was

1ProSeS stands for Protein Sequence Search.

under light load.

Test Data

For biological sequence databases, it is difficult
to build proper test collections to measure the
retrieval effectiveness. In a research conducted
by Williams et al. (2002), the PIR super-family
database was chosen to be the test database to mea-
sure the retrieval effectiveness. The super-family
classification in the PIR database is mainly based
on multiple alignments, i.e., global alignments of se-
quence sets (Wu et al., 2003). However, since the
sequence searches are mostly focused on local sim-
ilarities (Altschul et al., 1997), it is inappropriate
to use the PIR super-family database as test data
to measure the retrieval effectiveness. Thus, we
chose the PIR-NREF database (Wu et al., 2002) as
a test collection and compared our system’s perfor-
mance with that of BLASTP. BLASTP, a protein
sequence search program of BLAST tool collection,
searches protein sequences that show significant lo-
cal alignments with respect to a query protein se-
quence (Altschul et al., 1997). At the time of our
test, the PIR-NREF database Release 1.26 was used
and the database contains 1.27 million sequence en-
tries with average length of 317 amino acids and 405
million amino acids in total.

N-gram Indexing

Documents, especially those written in western lan-
guages, are made of words or terms that can be sep-
arated by blanks. Usually, in information retrieval
systems, these terms extracted from the documents
are stored in inverted files (Salton et al., 1983,
Witten et al., 1999). However, biological sequences
such as DNA and protein sequences are strings
without any blanks.  Furthermore, it is diffi-
cult to distinguish one meaningful segment to
another in a sequence string.  Some suitable
heuristic indexing methods have been designed
for such cases and n-gram token method is one
of them. Indexing documents with n-grams has
been successfully applied to several text collections
such as Chinese texts (Wilkinson, 1998) and OCR
texts (Harding et al., 1997). These texts are also
built in a manner that word boundaries are absent
or ambiguous. As mentioned above, biological se-
quences also have no “word” boundaries and there-
fore n-gram indexing will be an appropriate choice.

N-gram is just another nomenclature of “k-tuple”
used in FASTA literature (Lipman et al., 1985)
and  “w-mer” used in BLAST litera-



Table 1. Features of four N-grams

Symbol ‘ Length ‘ Alphabet # ‘ Term # ‘
N3-A20 3 20 8,000 (20%)
N4-A20 4 20 160,000 (20*)
N5-A20 5 20 3,200,000 (20°)
N6-A18 6 18 34,012,224 (185)

ture (Altschul et al., 1997).
be defined as intervals occurring in each sequence,
where the intervals are overlapping sub-strings of
some fixed-length n (Williams et al., 2002). For
example, if n = 4 and regarding a protein sequence
of ACEPITCH then the final n-grams are ACEP,
CEPI, EPIT, PITC, and ITCH.

We chose n to be 3, 4, 5, and 6, of which char-
acteristics are shown in Table 1, where the ‘Length’
indicates the fixed-length of an interval sub-string,
‘Alphabet #’ means the number of distinguishable
amino acid codes used for indexing, and ‘Term #’
is the maximum number of unique terms that can
be occurred in a protein sequence database.

Thus n-grams can

A protein sequence is a string of combined 20
amino acid codes?. For tri-gram(N3-A20), tetra-
gram(N4-A20), and penta-gram(N5-A20), the 20-
character alphabet is used to segment n-grams from
sequences. However, for hexa-gram(N6-18), an 18-
character alphabet is used. If the 20-character al-
phabet is applied, theoretical term space will con-
tain 64 million unique words, which could not be
handled in our system memory. In order to resolve
this problem, we merged two pairs of amino acids to
two amino acid codes — (V, I)toI,and (F, Y)toY
— that show the highest score in BLOSUMG62 scor-
ing matrix (Altschul, 1991), resulting the 18-amino
acid codes and term space of about 34 million words,
which then could be processed in memory.

N-grams are stored into an inverted index imple-
mented on the top of Berkeley DB system. Each en-
try of this inverted file is composed of a searchable
key and its postings lists. For example, consider the
following entry in the inverted file.

“ACEP” 36 (2), 127(3), 1074 (1), ...
This means that the tetra-gram ACEP occurs twice

in the 36th sequence, three times in the 127th, once
in the 1,074th, and so on. To reduce disk operations

2In fact, the number of amino acids is 21. However, the
total frequency of an amino acid (selenocysteine) in the PIR-
NREF database is extremely low so that it can be ignored.
There are three additional wild card characters such as B, Z,
and X (with low frequencies) and they are also disregarded
in this work.

in using an index for retrieval, the postings lists are
compressed with a general compression algorithm,

gzip.

Sequence Similarity Measure

There are several models that calculate the simi-
larities between the query and target documents in
the field of information retrieval. Among them, the
vector space model is one of the best studied and
the most widely used schemes (Witten et al., 1999).
In this model, the query and the target documents
are represented as vectors of unique terms, each of
which stands for a dimension in a high-dimensional
space. The similarity between the query and a doc-
ument is calculated by the inner product of their
representative vectors divided by a normalization
factor related to the document length. The similar-
ity measure (Sim(q,d)) between a query sequence
q and target sequence d is defined to be

1
Sim(q,d) = —- Z (wq,t'wd,t)
Wd tegnd
with:
N
wer = log(fgr+1)- log(ﬁ +1)

N
war = log(far+1)- log(ﬁ +1)

Wi = log(1+) fay)
ted

where f, ; is the frequency of n-gram token ¢ in se-
quence s; N is the total number of sequences in the
database; f; is the number of sequences where the
n-gram token ¢ occurs more than or equal to once;
w, ¢+ means the weight of token ¢ in the query or tar-
get sequence s; and W represents the length of the
target sequence d.

Evaluation

From the PIR-NREF database, 100 protein se-
quences were randomly selected as test query se-
quences resulting average length of 316 amino acids
and length range of 51 to 1,609 amino acids. De-
tailed information about these test-queries and their
BLAST result against the PIR-NREF database can
be obtained at our web site. We ran BLAST with
each of these sequences and retrieved at most 1,000
sequences that show local homologies with the input
sequence. In addition E-value was set to 0.0001 and
other parameters were set to default. These results
are regarded as the reference test set to measure
the retrieval effectiveness of the n-gram indexing
methods. Then we ran our system with same test



queries and also retrieved at most 10,000 homolo-
gous sequences from the PIR-NREF database. To
quantify the relative performance of each n-gram in-
dexing method, the measures of recall and precision
against BLAST result set were used. Recall and
precision are commonly used measures to demon-
strate the retrieval effectiveness of information re-
trieval systems (Salton et al., 1983). In this paper,
precision(p) is the measure of the fraction of the
relevant BLAST answers retrieved at a particular
point, that is

_ BLAST sequences retrieved
~ BLAST and non-BLAST sequences retrieved

p

In contrast, recall(r) is the fraction of the relevant
BLAST answers against total BLAST answers at a
particular retrieval point, that is

BLAST sequences retrieved

"= Total number of BLAST sequences

The relative retrieval effectiveness of four n-gram
methods will be shown in mean recall-precision
plots, with precisions measured at 11 points of re-
call, 7.e. 0.0, 0.1, 0.2, 0.3, ..., 1.0, for all query se-
quences and averaged at each point(Figure 1). Also
values of 11-pt average recall-precision measures,
averaged precision over 11 recall points, are given
for clarity to compare the relative effectiveness.

RESULTS AND DISCUSSION

Retrieval Effectiveness

Figure 1 shows mean recall-precision plots for four
indexing types used in this experiment. Results
are shown for the PIR-NREF database with 100 se-
quence query test set and their relevant sequences
judged by BLAST tool as described in the previous
section Evaluation. The results show that hexa-
gram(N6-A18) and penta-gram(N5-20) worked best
among four indexing types. However, the retrieval
effectiveness of tri-gram(N3-A20) was very poor,
while that of tetra-gram(N4-20) was in between.
The 11-point average recall-precision values for
N3-A20, N4-A20, N5-A20, and N6-A18 n-grams
were calculated to be 0.1376, 0.5038, 0.6342, and
0.6337, respectively. Compared with the 11-point
average recall-precision within the range of 0.25
to 0.40 for general text retrieval (Voorhees, 2002,
Oard et al., 2002), the value of around 0.63 for
N5-A20 and N6-A18 is significantly high enough to
draw an inference that searching only with penta-
gram or hexa-gram index can match for BLAST.
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Fig. 1. Mean 11-point recall-precision plots for
four n-gram index methods. We used 100 protein
sequences chosen randomly from the PIR-NREF
database as test query set. Precision was measured
at particular recall points from 0.0 to 1.0 at the in-
terval of 0.1 against BLAST result sequences. Mean
precisions for 100 query sequences at 11 recall points
are shown.

Figure 1 shows a trend that as the interval length
of n-gram grows, the retrieval effectiveness also in-
creases, except for the case of hexa-gram(N6-A18).
Note that N6-A18 indexing scheme used the 18-
character alphabet while the other three schemes
used the 20-character alphabet set. If we could
have implemented an indexing by hexa-gram with
the 20-character alphabet, we might have seen some
increase in the retrieval effectiveness. However, the
increment may be expected to be relatively small,
from the fact that the difference of 11-point aver-
age recall-precision between penta-gram and tetra-
gram is 2.8 times smaller than that of tetra-gram
and tri-gram(see Figure 1 and Table 2). It is pos-
sibly because as the length of n-gram grows, each
interval’s information content also increase, but the
longer the interval, the more chances to miss poten-
tial alignments in small areas less than the interval
length. Therefore, we suppose that the length of
n-gram exceeding 6 may be harmful to the retrieval
effectiveness.

Note that mean precision at recall 0.1 for penta-
gram is 0.869. This means that ProSeS gives highly
similar results to BLAST output at lower recall
level. The average size of the test set generated by
BLASTP for 100 query sequences is about 335 se-
quences. At recall 0.1, where about 34 sequences (=
10% of 335 sequences) are retrieved, ProSeS with
penta-gram gives about 30 sequences (= 86.9% of



>NF01265541 Similar to 5’-nucleotidase, cytosolic III (Fragment) [Xenopus
laevis]
Length = 204

Score = 127 bits (320), Expect = 1e-28
Identities = 96/288 (33%), Positives = 127/288 (44%), Gaps = 79/288 (27%)

Query: 15 PRALTDKMTLIRDAGPSKFQVF PTP ISEQGDAYY 48
P L DK+T I+ G K Q+ PT IS++G
Sbjct: 20 PEGLQDKITRIQRGGQEKLQIISDFDMTLSRFSRNGERCPTCYNIIDNSNIISDEGRK-- 77

Query: 49 DAKRQALYDHYHPLEISPVIPIDEKTKLMEEWWGKTHELLIEGGLTYDAIKKSVANSSIA 108
K + L+D Y+PLEI P I+EK LM EWW K HtL E + D+ + V §
Sbjct: 78 --KLKCLFDIYYPLEIDPKKSIEEKYPLMVEWWSKAHDLFYEQRIQKDRLAQVVKESQAT 135

Query: 109 FREGVSELFEFLEKKEIPVLIFSAGLADVIEEVTLKSISLLELLSYFCCLYNEYAFVAYS 168
R+G F L ++EIP+ IFSAG+ DV+EE
Sbjct: 136 LRDGYDLFFNSLYQREIPLFIFSAGIGDVLEE 167

Query: 169 HSYQVLRQNLDRTFKNVKIVSNRMVFNDDGQLVSFKGKLIHVLNKNEHALDMAAPLHDRL 228
++RQ N K+VSN M F+D+G L FKG LIH NKN L

Sbjct: 168 ----IIRQ-AGVFHPNTKVVSNYMDFDDNGILTGFKGDLIHTYNKNSSVL---------- 212

Query: 229 GVDIGEEDEENVNMKERRNVLLMGDHLGDLRMSDGLD-YETRISIGFL 275

++ E + R N+LL+GD LGDL M+DG+ E I IGFL
Sbjct: 213 ----- KDTEYFKEISHRTNILLLGDTLGDLTMADGVSTVENIIKIGFL 255

Fig. 2. The second entry of BLAST output for
the 97th query sequence, “NF00667350 hypotheti-
cal protein At2g38680 [Arabidopsis thaliana]”. This
sequence is not retrieved by ProSeS with the same

query.

34 sequences at recall 0.1) identical to BLASTP pro-
gram.

Further analysis of the ProSeS and BLASTP re-
sults showed that the number of perfect matches
for recall points 0.1, 0.4, 0.7, and 1.0 are 73, 51, 38,
and 17, respectively. This means that ProSeS and
BLASTP give exactly same results for 73 query se-
quences at recall 0.1, 51 at recall 0.4, and so on. And
9 query sequences have very poor precision below
0.1 at recall 0.1. For one of them, the 97th query se-
quence, BLASTP gives 20 sequences from the PIR-
NREF database, while ProSeS retrieves only 6 of
them in the result pool.

Figure 2 shows the second BLASTP match for
the 97th query sequence, which is not retrieved
with ProSeS system using penta-gram indexing.
Carefully observing the alignment in Figure 2, one
can find that only one identical penta-gram, IFSAG
starting at the 129th position of the query, exists in
both the query and the subject sequence. The sim-
ilarity measure calculated by vector space model in
ProSeS should be very small for this sequence since
only one index term is matching for both the query
and target sequence. Due to this small similarity
value, this sequence might be pushed to have worse
rank which resulted in missing this sequence from
the ProSeS result set.

On the other hand, Figure 3 shows the third
BLASTP match for the 97th query, which is also
retrieved by ProSeS. There are two identical penta-
grams in this alignment, IFSAG starting at the 129th
position of the query and GDLRM at the 256th posi-

>NF01178199 10 days embryo whole body cDNA, RIKEN full-length enriched
library, clone:2610024B13 product:HSPC233 (PYRIMIDINE
5’-NUCLEOTIDASE) (EC 3.1.3.5) (URIDINE 5’ MONOPHOSPHATE
HYDROLASE 1) (SIMILAR TO HYPOTHETICAL PROTEIN) homolog
[Mus musculus]
Length = 331

Score = 124 bits (310), Expect = 2e-27
Identities = 78/222 (35)%), Positives = 118/222 (53%), Gaps = 49/222 (22%)

Query: 55 LYDHYHPLEISPVIPIDEKTKLMEEWWGKTHELLIEGGLTYDAIKKSVANSSIAFREGVS 114
L + Y+ +E+ PV+ ++EK M EW+ K+H LLIE G+ +K+ VA+S + +EG
Sbjct: 122 LKEQYYAIEVDPVLTVEEKFPYMVEWYTKSHGLLIEQGIPKAKLKEIVADSDVMLKEGYE 181
Query: 115 ELFEFLEKKEIPVLIFSAGLADVIEEVTLKSISLLELLSYFCCLYNEYAFVAYSHSYQVL 174
LF L++ IPV IFSAG+ DV+EEV ++ HS
Sbjct: 182 NLFGKLQQHGIPVFIFSAGIGDVLEEVIRQA---============-=-=- GVYHS---- 217
Query: 175 RQNLDRTFKNVKIVSNRMVFNDDGQLVSFKGKLIHVLNKNEHALDMAAPLHDRLGVDIGE 234
NVK+VSN M F+++G L FKG+LIHV NK++ AL +
Sbjct: 218 --——------] NVKVVSNFMDFDENGVLKGFKGELIHVFNKHDGAL------—--——-——- K 253
Query: 235 EDEENVNMKERRNVLLMGDHLGDLRMSDGL-DYETRISIGFL 275

+ +K+ N++L+GD GDLRM+DG+ + E + IG+L
Sbjct: 254 NTDYFSQLKDNSNIILLGDSQGDLRMADGVANVEHILKIGYL 295

Fig. 3. The third entry of BLAST output for the
97th query sequence, “NF01178199 10 days embryo
whole body ¢cDNA ... [Mus musculus]”. This se-
quence is also retrieved by ProSeS with the same

query.

tion. For ProSeS, this sequence should have better
similarity value than the sequence in Figure 2, since
this sequence has two index terms in common with
the query sequence. Due to this better similarity
value, this sequence might rank better than the se-
quence in Figure 2, leading this sequence into the
ProSeS result set.

BLASTP ranks the two sequences in Figure 2 and
Figure 3 as the 2nd and the 3rd, respectively. How-
ever, ProSeS does not retrieve the sequence in Fig-
ure 2 but does retrieve the sequence in Figure 3.
From this fact, it is clear that there is some differ-
ence between the similarity measure of ProSeS and
local alignment of BLASTP. This imposes a need for
further research on refinement of the vector space
model used in ProSeS. We hope that new similarity
measure appropriate for protein sequences will be
studied in near future.

Considering the result for the retrieval effective-
ness, we suggest that penta-gram is the most suit-
able indexing scheme for protein sequences. In ad-
dition, in the case of penta-gram indexing, search
speed for the PIR-NREF database is the fastest
among n-gram methods tested in this work, which
will be described in the next section.

Space and Speed

Table 2 shows the index sizes in Mbytes, indexing
times in hours and average retrieval times in seconds
tested for the PIR-NREF database. The 11-point
average recall-precision measures are shown again
for referring purpose. Reminding that there are



Table 2. The index size, indexing time, retrieval
time, and 11-point average recall-precision for four
n-grams and BLAST.

N-gram | Inverted | Indexing | Retrieval | 11-point
lists(MB) | time(hr) | time(sec) | precision
N3-A20 1,514 1.91 16.70 0.1376
N4-A20 3,125 2.40 3.88 0.5038
N5-A20 3,075 3.97 1.17 0.6342
N6-A18 5,655 8.94 7.61 0.6337
BLAST 583 0.05 44.10 -

about 404,532,594 amino acids in protein sequences
of the PIR-NREF database Release 1.26, the small-
est and the largest index sizes are 3.7 times and 14.0
times bigger than the size of total sequences, respec-
tively. In the case of penta-gram(N5-A20) which
performs best in the sequence retrieval, its index
size is 7.6 times bigger than the sequence collection
size. Though current storage technology is devel-
oping rapidly, but considering the sizes of protein
sequence collections are also growing exponentially,
these are relatively large storage overheads. By in-
troducing techniques such as index compression for
nucleotide databases (Williams et al., 1997) and in-
dex stopping which discards high-frequency n-grams
from the index (Williams et al., 1996), we expect
that the index size of ProSeS system can be further
reduced to an acceptable level.

The indexing time is proportional to the dimen-
sion of term space as shown in Figure 4(also refer to
Table 2). This is, the longer unique n-gram tokens
in the database, the longer the indexing time. In
other words, the indexing time is exponentially pro-
portional to the length of n-gram intervals. Though
indexing step requires a few hours, it is acceptable
time since indexing is a system administrator’s job
which is executed only once prior to many users’
sequence retrieval processes. Furthermore, by care-
fully designing the memory structure for inverted
lists, rather than using C++ STL libraries, index-
ing time can be tremendously saved to the level of
several to dozens of minutes(data not shown).

On the other hand, the retrieval speed shows an
interesting trend. As the interval length of n-gram
grows from 3 to 5, the retrieval speed is inversely
proportional to the length(Figure 4). However, at
the point of 6, the retrieval speed is abruptly in-
creasing. This might be caused by the overhead of
index structure to store about 10 times more unique
index terms than those of penta-gram. Among four

—e— Retrieval (sec)
o+ Indexing (hr)

[0
E
= 8
6 -
4 -
24 o
0 T . : :
1le+4 1e+5 1e+6 1e+7
Term space in log scale
Fig. 4. The indexing time and retrieval speed

plotted against term space dimension in log scale.
The circle marks are for N3-A20, N4-A20, N5-A20,
and N6-A18 sequentially from left to right, and their
real dimensions of term space are 8.0x103, 1.6x10%,
2.8x10%, and 1.2x107, respectively. The indexing
time is measured in hour to index whole sequences
in the PIR-NREF database. The retrieval speed is
measured to retrieve 100 query sequences and di-
vided by 100, which is the average search time for
each sequence.

indexing schemes, penta-gram shows the best search
speed of average 1.17 seconds per one query se-
quence (Table 2). Compared with 44.1 seconds in
BLASTP, it is about 38 times faster. We again sug-
gest the penta-grams as the most efficient indexing
scheme for protein sequences.

CONCLUSION

We have shown that protein sequences can be re-
trieved by indexing protein databases with n-gram
methods, and penta-gram showed the best retrieval
speed and effectiveness. Though traditional search
model for n-gram indexing is still powerful, it is
required to fill the gap between local alignment
and our search model by further refining our vector
space model to be suitable for protein sequences.
An additional advantage of n-gram indexed system
is its applicability to many other systems that is
similar to or based on information retrieval. For
example, ProSeS system provides a function called
keyword suggestion based on simple data mining
method. It also presents a list of predicted subcel-
lular localization sites based on text categorization
algorithm.



Exhaustive comparison systems are in the face of
severe delay in search time. As biological databases
grow exponentially, exhaustive systems will be im-
practical as sequence retrieval tools, in the near fu-
ture. We hope that index-based sequence retrieval
systems such as ProSeS will be one of practical al-
ternatives to exhaustive biological database search
tools.
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